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Abstract

Traumatic brain injury (TBI) often results in chronic psychiatric-like symptoms. In a condition with few therapeutic

options, neuromodulation has emerged as a promising potential treatment avenue for these individuals. The goal of the

current study was to determine if transcranial direct-current stimulation (tDCS) could treat deficits of impulsivity and

attention in rats. This could then be used as a model to investigate treatment parameters and the mechanism of action

underlying therapeutic effects. Rats were trained on a task to measure attention and motor impulsivity (five-choice serial

reaction time task), then given a frontal, controlled cortical impact injury. After rats recovered to a new baseline, tDCS

(cathodal, 10 min, 800 lA) was delivered daily prior to testing in a counterbalanced, cross-over design. Treatment with

tDCS selectively reduced impulsivity in the TBI group, and the greatest recovery occurred in the rats with the largest

deficits. With these data, we have established a rat model for studying the effects of tDCS on psychiatric-like dysfunction.

More research is needed to determine the mechanism of action by which tDCS-related gains occur.
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Traumatic brain injury (TBI)-induced cognitive and

psychiatric-like dysfunction significantly impairs quality of

life for a growing population.1,2 Despite this, treatments have been

difficult to identify. Changes to monoaminergic function have re-

ceived considerable attention3,4 with dopamine (DA) abnormalities

emerging as a potential contributor to cognitive impairments.5–7 A

recent study in rats demonstrated that cathodal transcranial direct-

current stimulation (tDCS) raises striatal levels of DA,8 suggesting

it could have efficacy in treating DA-related cognitive deficits in

patients with TBI. In fact, recent studies in TBI populations have

shown efficacy of tDCS in treating working memory, attention, and

risky decision-making.9–11

To fully understand how tDCS may improve function, animal

models of chronic psychiatric-like dysfunction after TBI are nee-

ded. Our lab has demonstrated long-lasting deficits in attention,

impulsivity, and risky decision-making in a rat model of TBI.12,13

In the current study, we sought to determine whether tDCS stim-

ulation could effectively treat chronic psychiatric-like symptoms

such as impulsivity and attentional impairments after a brain injury

in rats. The goal was to establish a model that could be used to

further investigate treatment parameters and mechanisms of action

for tDCS in recovery of cognitive function.

Male Long-Evans rats were trained on the five-choice serial

reaction time task, a behavior designed to measure motor impul-

sivity and attention.13 Rats are required to respond to a briefly

displayed visual stimulus in one of five holes. Because the pre-

sentation is so brief, this sets up a prepotent motor response that

must be inhibited for a set amount of time (5 sec), yielding a

measure of both attention and motor impulsivity. Rats were trained

to stability (50 sessions), then given a bilateral, frontal, controlled

cortical impact TBI (n = 10; 5-mm impact centered at AP/ML +3.0/

0.0, DV -2.5 @ 3 m/sec, corresponding to severe injury) or sham

procedures (n = 10), as previously described, with a Leica impactor

(Leica Biosystems, Buffalo Grove, IL) and 1 week of recovery.13

After 6 weeks of post-injury testing to allow rats to recover to a

new baseline, tDCS sessions began. Stimulation was carried out

according to parameters from a previous study in which ventral

striatal DA levels were increased8 and was delivered in a within-

subjects cross-over design. Under isoflurane anesthesia, seven

sessions of current (cathodal, 10 min, 800 lA, 7.08 A/m2) or sham
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FIG. 1. Effects of TBI and tDCS on attention and impulsivity. All data are means + SEM. (A,B) Brain injury chronically impaired
attention ( p = 0.005; A) and impulsive responding ( p = 0.001; B). Breaks in lines represent tDCS or sham stimulation weeks. (C–F)
Stimulation selectively affected TBI rats, leading to slight decreases in accuracy ( p = 0.037; C) and decreases in impulsivity across time
( p < 0.001; E). However, the cumulative effects for accuracy on the last day of testing were not particularly notable (D), whereas for
impulsivity, there were substantial changes on the last day of testing (F). (G,H) Regression fits of the magnitude of impairment
(difference from pre-injury baseline; X-axis) and the magnitude of improvement due to tDCS (Y-axis) for the TBI group (white
squares). Stimulation differentially improved performance for the most impaired TBI rats (b = -0.62, t = 2.72, p = 0.035, AdjR2 = 0.61;
G), but sham stimulation had no effect (b = -0.22, t = 1.24, p = 0.263, AdjR2 = 0.01; H), even when accounting for the size of the lesion
(non-significant predictor). SEM, standard error of the mean; TBI, traumatic brain injury; tDCS, transcranial direct-current stimulation.
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stimulation were given using commercially available Ag/AgCl

hydrogel electrodes (The Electrode Store, Enumclaw, WA) placed

on shaved skin in front of bregma (cathode) and between the

scalpulae (anode), followed by 5 days of washout, with testing at

2 h after stimulation. Thus, the study timeline was:

Training (10 weeks) / Injury & Recovery (1 week) / Post-injury

baseline (6 weeks) / tDCS/Sham stimulation (7 days) / Washout

(5 days) / Sham/tDCS stimulation (7 days; condition reversed

from prior) / Washout (5 days) / Post-stimulation baseline

(1 week) / Perfusion.

At the conclusion, rats were transcardially perfused and brains

were sliced and examined to verify injury. Data were transformed

as necessary to normalize distributions and analyzed via linear

mixed-effects regression in R (Fixed effects: Injury Group · Week;

Injury Group · Session · Stimulation + baseline; Random effects:

Subject intercept).

The TBI group had significantly reduced accuracy (b = -0.07,

t = 2.82, p = 0.005) and increased impulsivity (b = 1.19, t = 7.87,

p < 0.001) that did not recover over the 6-week post-injury period

(Fig 1A,B). Stimulation slightly decreased accuracy (b = -0.08,

t = 2.10, p = 0.037; Fig 1C,D), and significantly reduced impulsivity

(b = -0.43, t = 3.40, p = 0.001; Fig 1E,F) in TBI rats. There was a

significant relationship between magnitude of impairment and

tDCS-induced recovery on impulsivity (b = -0.62, t = 2.72,

p = 0.035, AdjR2 = 0.61; Fig 1G,H), even when the size of the lesion

was factored in.

The treatment of chronic brain injury is a difficult task, and will

likely require multi-modal therapies including rehabilitative,

pharmacological, and potentially, neuromodulatory approaches.

With the increased prevalence of deep brain implants, neuromo-

dulation has emerged as a major field with numerous promising

applications. There is a proven track record of neuromodulatory

techniques in motor disorders,14 and new evidence is emerging for

efficacy in other ‘‘cognitive’’ diseases, such as addiction.15,16 In the

current study, we provide additional evidence for the use of tDCS in

the treatment of psychiatric-like dysfunction in the chronic post-

TBI period and establish an animal model for exploring the

mechanisms by which stimulation may reduce impulsivity. Prior

studies of neuromodulation in long-term dysfunction after TBI

have been limited, but one demonstrated considerable recovery

when direct cortical annodal alternating current was performed

concomitant with motor training.17 Another study observed dra-

matic improvement in motor outcomes when tDCS was delivered

immediately prior to behavior, but failed to translate these findings

to measures of working memory.18 Future studies should explore

whether combining stimulation with cognitive training may further

augment recovery. In addition, the effect of location and modality

of injury on neuromodulatory treatments remain to be investigated.

The precise mechanisms by which tDCS exerts its effects are

varied and may include alterations to individual neuronal firing,

disruption of circuits (including those involved in long-term po-

tentiation), and generation of plasticity-related factors such as

brain-derived neurotrophic factor (BDNF).19 However, in the

current study, we observed no lingering effects of stimulation—

benefits disappeared as soon as stimulation was stopped—

suggesting a more acute mechanism as opposed to long-term

changes. This is somewhat perplexing when compared with the

general literature on neurmodulation and plasticity.

However, whereas a prior study of tDCS in experimental TBI

found a correlation between BDNF expression in perilesional

cortex and memory function,20 these gains were also transient in

nature, making it difficult to determine whether BDNF expression

truly affected function. This suggests there may be some funda-

mental differences in the injured brain that may limit generalized

interpretation from neuromodulation in intact populations. In ad-

dition, a majority of experimental studies have used anodal tDCS as

opposed to the cathodal stimulation employed in the current study.

This may be of relevance given prior evidence that cathodal, but not

anodal, stimulation facilitates increased DA release8 and may ex-

plain why there were cognitive improvements shown in the current

study data although prior TBI studies were limited to motor effects.

Further understanding of the mechanisms by which tDCS may

confer beneficial effects will need to compare anodal and cathodal

stimulation to dissociate acute dopaminergic mechanisms from

long-term growth factor-related or synaptic mechanisms and de-

termine how these processes are altered in the injured cortex.

A particular finding from the current study that may be of im-

portance is the relationship between the magnitude of impulsive

deficit and degree of tDCS-induced recovery. These results suggest

that the most severely impaired may benefit the most from neuro-

modulation. These findings may also be reflected in clinical studies.

In a recent study examining effects of tDCS on risky decision-

making, the TBI sample was considered to be clinically/signifi-

cantly impulsive and were treatment-seeking.11 However, whereas

a reduction in impulsivity would be considered beneficial, it should

be noted that we also observed a small decrease in attention during

stimulation. If this effect replicates, this may temper enthusiasm for

tDCS as a treatment in TBI populations. Additionally, given the

relationship with injury severity observed here, future studies will

need to determine whether neuromodulatory approaches may be

beneficial in milder or concussive injury. Moreover, although tDCS

has been the focus of this study, there has been a surge of interest in

other neuromodulatory techniques for TBI. This potential has been

reviewed recently,21–23 along with several experimental studies in

animals exploring everything from extremely focal (e.g., deep brain

stimulation) to decidedly broad (e.g., pulsed ultrasound).24–26

Going forward, it will be important to identify common and dis-

parate mechanisms between these neuromodulatory techniques that

contribute to recovery of function.

The data presented here strongly map on to observations within

TBI clinics and highlight the translational nature of the rat as a

model for chronic TBI-related dysfunction. The use of sophisti-

cated, long-term cognitive testing should open a window into the

study of TBI recovery and enable investigation into parameters and

mechanisms of neuromodulatory techniques such as tDCS.
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